Digi International Enabling IoT in Space

Space Flight Illustrates 'On-Demand' Payload Deliveries from International Space Station

MINNETONKA, Minn., March 4, 2017 – Digi International®, (NASDAQ: DGII), a leading global provider of machine-to-machine (M2M) and Internet of Things (IoT) connectivity products and services, announced that on Monday, March 6 at approximately 12:20 p.m. C.T.  its Digi XBee® 802.15.4 modules will be used by the National Aeronautics and Space Administration (NASA) as part of a test program for wireless communications within satellites and payloads from the International Space Station (ISS).
 
Slightly after noontime on Monday, at an altitude of approximately 250 miles, the ISS will release a TechEdSat 5 (Technical and Educational Satellite 5), a cuboid-shaped device, approximately the size of a fire extinguisher. After a 30-minute time-period, Digi XBee modules, taking the place of wired connections, will begin to operate as the wireless "data-crossroads" between key components of the satellite. At ten second intervals, the Digi XBees will transmit important orbital data within the satellite including the satellite's translational acceleration and angular rate, magnetic field, atmospheric pressure, temperature, and strain. This data will then be used in the design of future satellites.
 
Typically, data communications are transmitted through wired connections, but as part of a "wireless-in-space" effort, NASA is working to augment traditional wiring with wireless networking to lessen weight, increase payload capacity and create new communication models. For example, through wireless communications, future satellites could communicate directly with each other in a mesh network.
 
"This is another example of the limitless possibilities of wireless communications," said Rob Faludi, chief innovation officer, Digi International. "NASA is continually expanding the boundaries of creating and applying innovative technologies and we're thrilled to be part of these efforts."
 
In addition to testing wireless communications within the satellite while in orbit, the mission will include the testing of a passive de-orbit system for the ISS to bring samples back to earth in an "on-demand" model.
 
Typical de-orbit delivery methods require the use of rocket technology to decelerate delivery payloads, but, due to safety concerns, storage of rockets on the ISS is not a possibility. NASA's Ames Research Center in California's Silicon Valley has been experimenting with "drag" technology to deliver payloads in a parachute-like manner back to earth through the use of an Exo-Brake, a specially-designed braking device that operates similar to a parachute at extremely high speeds and low air pressures, designed to descend to earth over a period of weeks.
 
Over the course of its descent, Digi XBee will be transmitting data on the performance and testing of the modulating Exo-Brake as it changes its surface area to allow the satellite to more precisely enter the atmosphere.
 
As a first test, the initial deployment will call for the satellite to be burned up in the atmosphere, but later missions are planned with wingsail style parachutes that will continue the effort to bring perishable experiment samples quickly back from the ISS.
 
"NASA is looking at wireless sensor technology as another tool to help understand vehicle dynamics, heat-shield or ablator performance, and fluid mechanics" said Marcus S. Murbach, principal investigator, at Ames. "Of particular interest is the application of wireless sensor technology to a controllable Exo-Brake – to which data can be compared to entry systems models of drag-based de-orbit."
 
For more information on Digi's role in working with NASA, see "Digi International Onboard NASA's SOAREX-8 Suborbital Flight."

Featured Reports

Connected Vehicle: V2V and V2X Market Outlook 2017-2022

Connected vehicle technology is rapidly evolving to encompass Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Device (V2D), and Vehicle-to-Pedestrian (V2P) signaling and communications. This research examines the V2V and V2X market including technologies, solutions, and major players. 
Buy now

 

IoT Device Management: Outlook and Forecasts 2017-2022

The report evaluates market opportunities and challenges for IoT Device Management solutions across various industry verticals.  The report includes forecasting for global and regional markets as well as potential across deployment types and sectors including automotive, manufacturing, smart cities, and more.
Buy now

 

DAS Market Analysis and Forecasts 2016-2021

Analysis of the DAS market, including carrier WiFi, small cells, and SON, and the leading companies in the DAS ecosystem and their solutions.  The report also includes evaluation of market drivers, challenges, and provides forecasts for 2016 to 2021.
Buy now

 

NextGen Network OSS/BSS Forecast 2016-2021

Comprehensive coverage of NGN OSS/BSS including opportunities within Big Data and IoT, analysis of the drivers and issues related to the technical and business aspects of OSS/BSS, deployments and operations issues, and quantitative analysis with forecasts for anticipated growth through 2021.
Buy now